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A b s t r a c t  

It is shown that the Fraunhofer approximation, used in 
the kinematical theory of X-ray diffraction, may fail for 
a wide variety of crystals with different perfection. The 
kinematical theory describing the diffraction pattern in 
the general case is developed. The case of spherical- 
wave diffraction by a plane parallel crystal is 
considered in detail. The intensity distribution and the 
diffraction line width are ascertained to be essentially 
dependent on the region of diffraction in which the 
observation plane is located. On the other hand, the 
diffraction pattern geometry is independent of the 
diffraction region and is determined only by the crystal 
structure and the optics of diffraction. The geometry of 
the diffraction pattern recorded by the divergent-beam 
method is analysed in detail. 

I n t r o d u c t i o n  

General formulations, conclusions and methods of the 
kinematical theory were developed shortly after the 
phenomenon of X-ray diffraction by crystals had been 
discovered, and since then they have remained prac- 
tically unchanged (see James, 1948; Iveronova & 
Revkevich, 1978). It follows from the difficulties arising 
in the analysis of diffraction in the pseudo-Kossel and 
divergent-beam schemes (Londsdale, 1947) and the 
development of methods of the dynamical theory of 
diffraction (Kato, 1961; Afanas'ev & Kohn, 1977) that 
a more rigorous solution of the problem is necessary 
and possible. This is because, apart from the assump- 
tions on the character of the interaction of X-ray 
radiation with matter (the first Born approximation), 
the Fraunhofer approximation is considered to be valid. 

Let us consider which restrictions on the crystal 
dimensions are imposed by the Fraunhofer approxi- 
mation. In the first Born approximation the total 
amplitude of the waves scattered by the crystal may be 
presented in the form (Cowley, 1975) 

~sc(R)  = A e f Igo(R c) p(R c) Csl R --  Rc I-I 

x exp(t2zd£1R -- Rcl) d 3 R c. (1) 

0567-7394/82/040454-10501.00 

Here R determines the observation point M (see Fig. 1), 
R c determines the scattering centre position; v e is the 
crystal volume; K = 1/2, where/l is the wavelength; the 
coefficient A,, is the Thomson scattering amplitude. A e = 
-e2/mc 2, where e is the electron charge, m is the 
electron mass, c is the velocity of light; C s is the 
polarization factor, C s = 1 for a polarization and C s = 
Re.(R -- Re)/R e I R -- R e I for zr polarization; ~o(Re) 
describes the incident wave amplitude at the point R c. 

Let us analyse (1) for the case of a spherical incident 
wave q/0(R) = R -1 exp(i2rdfR). We choose the vector 
R l on Fig. 1 corresponding to a point b inside the 
crystal and write R e and R - R c in the form R e = R~ + 
r cand R - -  R e =  R 2 - r  c , w h e r e R  2 =  R -- R~. Let us 
assume the crystal dimensions are small as compared 
with the distances R 1 and R 2, then the expansions for 
R e and I R -  Rcl are 

Rc~_R 1 + sl.re + (s I x rc)2/2R1 

I R - - R  el_~R 2 - s  2.r c + ( s  2x rc)2/2R2 . (2) 

Here s I = RI/R 1 and s 2 = R2/R 2. The Fraunhofer 
approximation means that second-order infinitesimal 
terms in (2) may be neglected in the calculation of 
amplitude ~sc(R).J" This can be done, if the relation 

(s I x re)2/Rl + (s 2 x rc)2/R2 ~/1 (3) 

"I" An analysis of the X-ray diffraction by crystals of finite 
dimensions was carried out by Samsonov (1979) taking second- 
order terms into account in expansion (2). 

M 

s R, 

cr~s ta l  

Fig. 1. Geometry of spherical-wave scattering. S is the radiation 
source, M is the observation point. 
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is satisfied for any point of the crystal r c. Relation (3) 
approximately corresponds to the condition: ! ~ l F = 
(2R*) v2, where l is the crystal maximum dimension, l F 
is the dimension of the first Fresnel zone, R* = R 1 
R 2/(Rl + R2). It follows from (3) that the Fraunhofer 
approximation in the case of the divergent beam (DB) 
and pseudo-Kossel (PK) methodst fails even for 
extremely small crystals or blocks (l r ~ 0.5 ~tm and l r >~ 
0.03 p_m, respectively). At l >~ l F the Fraunhofer 
diffraction is not realized.l: 

This means that there is a wide variety of experi- 
mental situations in which the interpretation of the 
diffraction patterns for imperfect crystals may lead, in 
the framework of the Fraunhofer approximation, to 
incorrect results. The Fraunhofer approximation is 
apparently applicable only to fine-grained polycrystals 
or strongly deformed single crystals. § 

Below, the kinematical theory of spherical-wave 
diffraction is formulated in the general form. The case 
of diffraction from a plane parallel crystal plate is 
considered in detail. 

Principles of diffraction pattern formation 

In the analysis of spherical-wave diffraction we make 
use of a representation in terms of the angular spectrum 
of plane waves (see Born & Wolf, 1968; Kato, 1961). 
In this case, the crystal response to each of the plane 
waves forming the spherical wave is determined and the 
resulting field is calculated by summing all the 
elementary fields. Such an approach proves to be rather 
fruitful, since in this way one does not need to state any 
a priori  approximation in representing the spherical 
wave front, and the usual technique of analysis in terms 
of plane-wave diffraction can be used to its full extent. 

1. Angular spectrum of plane waves 

The spherical wave ~(R) = R -~ exp(i2zdfR) emitted by 
a point source has at the point R(x,y ,z)  the following 
Fourier representation: 

CX3 

~ =  f f Bexp[i2rc(px + qy)l dpdq .  (4) 
--OO 

t In the DB method the crystal under investigation is placed near 
an external point source of divergent X-ray radiation. Thereby R ~ is 
equal to 1-5 mm, R 2 > R v In the PK method the source is excited 
in the film placed onto the specimen, R~ < 10 -2 mm, R 2 >> R r 

~: Notice that as the crystal thickness tends to zero the formulae 
of the dynamical theory by Kato (1961) are in disagreement with 
the well-known formulae of kinematical theory (see James, 1948). 

§ For example, if Pd is the dislocation density, the Fraunhofer 
approximation is applicable at Pd >> l/l~. The quantitative estimates 
take the form: Pd ~ 5 X l0 s cm -2 and Pd >~ 10~ cm-2 for the DB 
and PK schemes, respectively; Pd >> 107 cm-2 for diffractometry. 

Here B(p,q,z) is the weight function relative to the 
angular spectrum of the wave ~(R). We leave the region 
p2 + q2 = K 2 out of consideration, regarding the integral 
in this region as improper. For p2 + q2 :/: K2: 

B = i (K  2 -  p2__ q2)-1/2 e x p [ i 2 z c ( K  2 _ p 2  _ q2)1/217.1]. (5) 

The condition p2 + q2 > K 2 corresponds to surface 
waves propagating along the plane z = 0. The 
amplitude of these waves decreases rapidly, as I zl 
increases, and they may be neglected at I zl >> 2. The 
integrand in (4) may be interpreted as uniform plane 
waves • 

U(K,R) = ( i /Iml) exp(i2zrK. R) (6) 

provided p2 + q2 < K 2. Here K(p,q,m) is the wave 
vector; 2p, 2q and 2m are the cosines of the angles 
between the direction s = 2K of the plane-wave 
propagation and the coordinate axes X , Y , Z ,  respec- 
tively; Iml = (K z -  p 2 _  q2)1/2. Comparing (6)with (4), 
(5), one can see that the plane waves under con- 
sideration propagate in the half-space z > 0 in the 
positive direction of the Z axis (m > 0), and in the 
half-space z < 0 in the negative direction of the Z axis 
(m < 0). 

We shall now consider crystal diffraction of the 
spherical wave ~o(R) = R -~ exp(i2rdfR) and determine 
the field of scattered waves in the first Born approxi- 
mation of diffraction theory. 

2. Diffracted wave field 

As a result of crystal diffraction, each of the plane 
waves (6) is transformed, according to (1), into a 
packet of spherical waves V(Ko,R): 

V =  h e f U o ( K 0 , R c )  P ( R c )  C s l R - -  Rc [-1 
Vc 

x exp ( i2nKIR  -- Rcl )daRc. (7) 

Here K0(P0,q0,m o) is the wave vector of the incident 
plane wave. 

Expressing the scattered spherical waves in the 
integrand of (7) in terms of a spectrum of plane waves 
(see § 1), we can rewrite formula (7) in the following 
form: 

V(Ko,R) = W(K0,R)U0(K0,R). (8) 

The function W(K0,R) in (8) describes a transfor- 
mation of the plane wave U0(K0,R ) due to crystal 
diffraction and is determined by the expression 

W :  iA e f f [mh I-1 C s f ( K  h -- K0) 
p2+q~<K: 

x exp[ i2n(K h -- K0). R] dph dqh. (9) 

Here Kk(ph,qh,m h) is the wave vector of the scattered 
plane wave, the factor C s is equal to 1 for a polarization 
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and to s o. st, for ~z polarization, the function f(Kt ,  -- K0) 
is the Fourier transform of the electron density p(R~): 

f =  f P(Rc)eXp[--i2rc(K a -  Ko) .Rc]d3Rc . (10) 
V c 

The total field of the waves diffracted by the crystal 
is determined by integration of (8) over P0 and q0: 

q/sc= f f Gexp[i2rc(PoX + qoy)]dpodqo. (11) 
p ~ , + q . < K :  

The function G = B(K0,R) W(K0,R) in the integrand 
determines the angular spectrum of the waves scattered 
by the crystal. Formula (11) describes a field of 
diffracted waves in the kinematical approximation of 
the theory for any geometry of experiment and for an 
arbitrary distribution p(Re). 

Let us analyse the expressions obtained. For a 
periodic distribution of the electron density, the 
func t ion f i s  different from zero only in a discrete set of 
regions of reciprocal space. In the case of a homo- 
geneous single crystal this set of regions can be 
described by a reciprocal lattice (or an averaged one), 
in which the function f t a k e s  on a noticeable value only 
in the vicinity of the reciprocal-lattice points H.* This 
means that the wave field ~c(R) can be represented as a 
sum of the fields ~'n(R) corresponding to different 
points of the reciprocal lattice. Thereby the diffraction 
of a plane wave is described in reciprocal space by 
means of a transformation of the wave vector K 0 into 
the wave vector K a of the scattered wave: Kt, = K 0 + H 
+ AI-I, where H is the reciprocal-lattice vector and AH 
varies in the vicinity of the H point of the reciprocal 
lattice. Since IK01 = IKhl = ,71, -I the vectors K 0 and H 
are related to each other by the following expression: 

(H + AH) 2 + 2K 0. (H + AH) = 0. (12) 

For a given K o (12) determines the H-node section of 
the reciprocal space by the Ewald sphere. At AH = 0 
(12) corresponds to the Bragg equation. The vectors K 0 
and K h satisfying the Bragg equation will be denoted by 
Kg and Kn n. 

Let us deterime the field ~n(R) corresponding to a 
fixed value of the vector H. 

3. The field of  a spherical wave diffracted by a set of  
crystallographic planes 

To find the field ~'n(R), we take an orthogonal system of 
coordinates associated with the reciprocal-lattice vector 
H and choose the origin of coordinates at the radiation 
source. Let us direct the Z axis along the vector --H 
and set the Y axis in the plane parallel to the crystal 

* A specific form of the distributionf(K a - K0) for single crystals 
of various perfection, shape and dimensions was considered by 
many authors and described in a number of monographs (see 
James, 1948; Cowley, 1975). 

surface. The unit vectors along the coordinate axes are 
determined by the expressions: e x = e,. × e z, e~. = (n o × 
e y s i n  a, e z = - -H/H,  where a is the angle between the 
normal to the crystal surface n o and ez (see Fig. 2). Let 
us denote the components of the vector K~ as P,Q,M. 
Let 0 be the Bragg angle, and AP,AQ,AM describe a 
deviation from the vector K~ in the scattering plane. 
Taking into account that M = K sin 0, Q = (K 2 cos 2 0 
_ p2)v2, and AP and AQ are related to each other by 
the expression AP/P  = AQ/Q,  one may transform 
formula (11) to new variables P and fl = AP/P.  The old 
variables are related to the new ones as follows: 

P0 = P(1 + fl) 

q0 = ( K2 c°s2 8--  P2)1/2(1 + fl) 

m0 = K sin 0(1 -- 2fl cot 2 0 - -  fl2 cot 2 0) ~n. (13) 

Formula (11) can be rewritten in the new variables as 
follows: 

v/n = f f  G' exp{i27r[Px + (K  2 cos 20-p2)V2y]  

x (1 + fl)} dP aft. (14) 

Here G'  = K2cos20 ( K 2 c o s 2 0 -  p2)- ln  (1 + /3) 
x G(P,fl ,  R)  and the function G(P,  fl, R) = GlPo(P,  fl), 
qo(P,fl), R] [see (11)]. Integration in (14) is carried out 
over the range IPI < K, lfll < 1. G' is a slowly varying 
function of P. This allows us to evaluate the integral 
(14) over the variable P by the stationary-phase 
method: 

CO$ 6 0 ] 1/4 
~H = exp(--irc/4) 26(-~- + y2) 

x _f G~texp[i2~Kcos 8(x  2 + y2)~n 

~/3~< 1 

x (1 + fl)] dfl. (15) 

The function Gst = G(Pst,fl, R ) is calculated at the 
stationary-phase point: Ps t=  K x  cos O/(x 2 + y2)~/2. 

We shall now find an explicit expression for ~'n(R) in 
the case of an ideal crystal plate of thickness t. The 
region corresponding to the volume v e of the crystal is 
determined in the chosen coordinate system by the 
condition: D 1 - t/2 < no. R e < D 1 + t/2, where D 1 -- 
t/2 is the distance from the source to the entrance 
surface of the crystal. 

In an ideal crystal the distribution f ( K  k - K0) in the 
vicinity of the H point of the reciprocal lattice can be 
represented in the form 

f n  = FH £2-1 f exp(--i2~dH. Re) d3Rc. (16) 
L' c 

Here .O is the unit-cell volume, F n is the structural 
amplitude for the H reflexion. For the considered 
crystal volume, 
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(O -Z sincCt -z) tFn exp -- i2n 
f n - - ~  COS a / \ cos  a 

x 3(AHy) 3 (AH x + A H  z tan a).* (17) 

Using the relation K h = K 0 + H + AH, we substitute 
the integration over the variables p~ and qh by that over 
A H  x and AHy. In this case, the integration in (9) is 
carried out within the limits of  the reciprocal-lattice- 
node section determined by (12). Using the conditions 
IAHI ,~ IHI and Ifll ~ 1, we obtain:  

Ws = _ i  A e Cs Fn 2t s inc(  tAHz 1 
S2), n \cos  a /  

× exp { i2n[ H. R ,+ AHz(z  -- x tan a 

-- D1/cos a)]}. (18) 

Here the factor C~ is equal to 1 or cos 20 for a or n 
polarization, respectively; ~'0 = sg.n0 = sin 0 cos c t -  
2Psi sin a and ),n = s~. n o = - s i n  0 cos a - 2P~t sin a are 
the cosines of  the angles between the normal  to the 
crystal surface n o and the wave vectors Kg and K~, 
respectively; 

2 cos 2 0 cos a 
AHz _ ~ -  

2),H 

x [fl + / ? z l  c°s2------~0 + ),0 cos 20 ] l .  (19) 

\ ),2 2),nsin 2 0]] 

* The function sinc is defined as sinc ~ = sin (nOIn~, 3(0 is the 
Dirac function. 

The expression for B ~ , z )  takes the form 

B ~_ ( i lK sin 0) exp[i2nKIzl  sin 0(1 -- f lcot  2 0 

_ f12 cot 2 0/2 sin 2 0)]. (20) 

In the phase factor we have kept terms up to the order 
o f f l  2. 

Substituting the expressions for Gst = B Wst into (15) 
and performing the change of  variables r / =  2t cos 2 0 x 
fl/2), H we obtain: 

ql n = A e C s F n 23/2 cos 1/z 0 (g'2 sin 20)-1(x 2 + y2)-1/4 

x exp [ i Z n ( K ~ . R -  1/8)] 

x ~ sinc r/exp[i2n(r/q0 n 
--CO 

- r/2 2/~),zn/Zt2 sin 2 20)] dr/. (21) 

Here 

q~n = (2t)-l[2D~ + x sin a -- z cos a 

+ x z  sin a cot O(x z + yZ)-l/Z 

__(X 2 + y2)1/2 COS 0L tan 01 (22) 

/ ~ = R ~  + R 2 Tn2(sin 2 20 + 2),o),ncos 2 0 - -  ~ ) .  (23) 

The distance R l is measured from the source to the 
crystal along the ray K~ and the distance R 2 is 
measured from the crystal to the observation point R 
along the ray K e When n o lies in the diffraction plane, 
(23) is simplified to/~ = R 1 + R 2 ),2/),2H" 

Formula  (21) is equivalent to the expression 
describing plane-wave diffraction on a slit with the 
dimension L = t sin 20/), n placed at a d i s tance /~  from 
the observation plane (Goodman,  1968).* The slit 
image centre is determined by the condition 

q~n = 0. (24) 

The value L q ~  corresponds to the distance from the 
observation point to the image centre. Accordingly,  in 
our case, (24) is an equation for the diffraction line 
centre (in the scattering plane) and determines a 
complex surface, which is described by a fourth-degree 
polynomial  [see (22)]. The section of this surface by the 
film plane are recorded in the experimental  set up. 

We shall now analyse the integral in (21) and obtain 
an explicit expression for the distribution of diffraction 
line intensity. 

4.  The  d i f f r a c t e d - w a v e  intens i ty  d i s tr ibut ion  

In the analysis  of  the diffraction pattern from a slit with 
dimension L = t sin 20/?H placed at a d i s tance /~  from 

Fig. 2. Divergent-beam diffraction technique. S is the radiation 
source, C is the crystal, n o is the normal to the crystal surface, 
FF' is the observation plane, XYZ is the coordinate system used. 

* The situation is analogous to the case of normal incidence of a 
plane wave on the slit. Thereby the slit plane and the observation 
plane are considered parallel. 
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the observation plane one usually distinguishes three 
regions: the region of geometrical shadow image (I), the 
region of Fresnel diffraction (II) and that of Fraun- 
hofer diffraction (III). The criteria for the observation 
plane to lie in one of these regions are 

region I region II region III 

t >> a F t ~ "  O F t ~ er1" (25) 

Here cr r = 6Fyn/sin 20, 6 v = (2R") ~jz is the dimension of 
the first Fresnel zone.t 

At first glance, we have obtained an unusual result. 
An infinite crystal plate does not satisfy the Fraun- 
hofer approximation conditions (3). However, at t ,~ trv 
such a plate gives the Fraunhofer diffraction pattern in 
the scattering plane just like a small crystal with 
dimension l ,~ (2R*) v2. This fact follows from three- 
dimensional diffraction theory and can be explained in 
terms of a construction in reciprocal space. The 
reciprocal-lattice node for a thin plane parallel plate is 
extended only along one direction, therefore in spheri- 
cal-wave diffraction on such a crystal only one 
diffracted plane wave is significant in expansion (4). As 
a result, the spectrum of diffracted waves corresponds 
to the distribution (10). 

Let us determine the diffraction patterns for the 
different diffraction regions. In region I the condition 
t >> erv corresponds to the possibility of neglecting the 
term proportional to r/2 in the exponent in (21). In this 
case the integral is tabulated, and we can obtain the 
following expression: 

~ = - n C  s Zn(;LR o sin z 20) -1/2 

× exp[t27r(K B. R -  1/8)] rect q~n. (26) 

Here XH = - A e F H 2 2 / 1 2  is the Fourier expansion 
coefficient of the crystal polarizability, R 0 = R~ + R 2, 
rect ~ =  1 at I~1 < 1/2 and rect ~=  0 at I ~1 > 1/2. The 
condition I q)nl < 1/2 determines the shape and width 
of a diffraction line, q~n = 0 corresponds to the centre 
[see (24)]. 

In region II the integral in (21) cannot be repre- 
sented in analytical form. In region III the function sinc 
in the integrand of (21) may be considered as slowly 
varying in comparison with the oscillations of the 
exponent, and the main contribution to the integral 
comes from points in the vicinity of the stationary 
phase point. The calculations show that 

~o'}p = inCsXut (~ tyn) - I  (RoR~-I/2 sinc (t 2 On/a2v) 

× exp[i2zr(K~.R + t 2 ~2H/2a2)]. (27) 

AS in (26), the condition q~n = 0 describes a locus 
corresponding to a diffraction line centre. For the rest, 
the distribution ~ I ( R )  qualitatively differs from q//(R). 

t 6 F is equal to 3 ~rn for 2 = 1 A and/~ = 10 cm. This means that 
the experimental diffraction pattern may correspond to any of the 
regions I, II or III. 

In region I the diffraction lines have sharp edges (due to 
the function rect q~n), the line width is independent of 
the distances R 1 and R 2. In region III the distribution of 
intensity of a diffraction line is described by a smoothly 
varying function sinc 2 (t  2 q~n/a2F), the diffraction line 
width is much larger than in region I, therefore this 
width increases with increasing R l and R 2. The 
integrated intensities do not depend on the diffraction 
regions (25) and are equal to* 

oo 

/it~t = f I~H 12 d(L ~n) = (ZrCslY.HIt)2/2Ro Yn sin 20. 

-~  (28) 

Integration in (28) is carried out in the scattering 
plane.t 

We now compare formulae .(26) and (27) with some 
known results. In the scattering plane, containing a 
normal to the crystal plate surface, (26) corresponds to 
the limiting transition t /A  n ,~ 1 in the dynamical theory 
developed by Kato (1961)~: and (27) can be obtained in 
the limits t / A  n ,~ 1 and t/er F ,~ 1, using the dynamical 
theory developed by Afanas'ev & Kohn (1977).§ In the 
case of Bragg symmetric diffraction and R l >> R2, 
formula (27) gives an expression, known in kinematical 
theory, for the reflexion coefficient of an X-ray wave 
emitted by a point source and reflected by an atomic 
plane. This expression has been obtained by Darwin, 
using the method of summation of Fresnel zone 
contributions (see James, 1948): 

Iql = A e CslFHI d H 2/.0 sin 0. (29) 

Formula (27) also includes another known expression 
for the intensity of a wave scattered by a crystal plate 
with thickness N d z :  

I@) = Iq12N2 sinc (2edn Ncos  0/2) (30) 

provided the incident wave amplitude is equal to 1 on 
the cr~stal surface (see James, 1948). In (30) E = 
L q~n/R is the deviation from the Bragg angle 0. Thus, 
(26) and (27) contain known results or agree with them. 

Based on the above-mentioned results, one can arrive 
at the following conclusion. The form of intensity 
distribution depends on the observation conditions and 
has distinctive features in different regions of obser- 
vation (25). This means that the problem of deter- 
mining the form of a reciprocal-lattice node from the 
intensity distribution involves solving the convolution 
equation and cannot have an unambiguous answer 
without involving additional information on the crystal 
itself. 

Note  1. In a real experiment the diffraction pattern is 
obtained by summing the waves scattered by different 
blocks of the crystal mosaic. Mosaic blocks are 

* This result follows also from the Parseval theorem. 
f For unpolarized radiation C s = (1 + cos 220)/2. 
:~ A H is the extinction distance. 
§ See also Aristov, Afanas'ev, Kohn & Polovinkina (1980). 
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infinitesimal elements of a large object - the crystal. 
Therefore, when the applicability of various approxi- 
mations is estimated, one should take into account not 
only the dimensions of the infinitesimal elements, but 
the dimensions of the whole object as well. Taking this 
into account conditions (25) can be rewritten: 

region I region II region III 

t >> O F t ~ a v ~ ( tT) m (tT) v2 "~ (7 F. (31) 

Here t is the mosaic block thickness, T is the crystal 
thickness. It follows from (31) that in spherical-wave 
diffraction by a crystal of large dimensions the 
diffraction pattern, as a rule, is not Fraunhofer's, even if 
the crystal consists of fine blocks. 

Note  2. Above, we have ascertained that the 
diffraction pattern geometry (the shape and position of 
diffraction lines on the X-ray pattern) is independent of 
the diffraction region in which the observation plane is 
located. Using the dynamical  approximation of the 
theory, one may show that the diffraction pattern 
geometry in this case can be also described in terms of 
sections of the surface q~  = 0 (within the corrections 
for X-ray refraction and absorption in the crystal). This 
conclusion is of great importance for a practical 
application of the DB and PK methods to the 
investigation of single-crystal structures. 

The problem of describing the DB diffraction 
pattern geometry has been solved by many authors by 
determining the paths of the rays diffracted by the 
crystal at the Bragg angle. Since the relation R 2 >> R~ is 
satisfied in the PK scheme, such diffracted patterns are 
satisfactorily interpreted in terms of conic sections, 
similarly to the Kossel lines, and have been studied in 
detail (see Tixier & Wache, 1970). In the DB scheme 
R2 is greater than or close to R1, and diffraction lines 
may appreciably differ from second-order curves 
(Imura, Weissmann & Slade, 1962; Newman, 1970; 
Vasil'ev & Ivanov, 1971). As a consequence, the DB 
diffraction pattern is more complicated and has not 
been described in detail up to now.* Therefore it should 
be of interest to analyse in detail the diffraction pattern 
geometry, and determine the dependence of the dif- 
fraction line shape on the orientation of the reflecting 
planes and the experimental geometry. 

In order to analyse the section of the diffraction surface 
q~n = 0 with the observation plane n o. R = D 2, we use 
a new coordinate system X~Y~Z~ in which the Z~ axis is 
parallel to the normal n o . For that, we turn the old 
coordinate system X Y Z  about the Y axis by the angle 

* Special features of the optical diffraction scheme with the DB 
method are considered in a paper by Aristov, Shektman & 
Shmyt'ko (1976). 

i 

N'  O' 
Fig. 3. Picture clarifying the choice of the coordinate system X 2 I"2. 

S is the source, C is the crystal, F is the film. Line OO' is parallel 
to the normal to the reflecting planes, N N '  is the perpendicular to 
the crystal surface, S N '  = D~ - t /2 ,  S N  = I DzL. 

- a .  Therefore the variables x ,y , z  are replaced by x = 
x, cos a - z~ sin a , y  =Yl,  z = x~ sin a + z 1 cos a. In the 
X , Y ~ Z  1 system the entrance and exit surfaces of the 
crystal are described by the equations zl  = D~ -- t/2 
and z~ = D,  + t/2, respectively. The equation z~ = D 2 is 
determined by the observation plane. 

In the X~Y~Z~ system (24) can be rewritten for the 
case Lal = n/2 as follows" 

(2D, -- D2)(D 2 + y])~/2_ x~D2 cot 0sgn a = 0.* (32) 

For the case l al ~: zr/2 we also introduce the 
coordinate system X 2 Y  2, which corresponds to a 
parallel translation of the system X~Y~ZI from point S 
to point O: x 2 = x~ - D 2 tan a, Y2 = Yl (see Fig. 3). In 
the X 2 Y2 system (24) takes the form 

(2D 1 - -  D 2 ) ( x  2 cos  2 a + ),~)1/2 + x2 D2 sin o cot 0 

+ x22 sin 2 a cos a cot 0-- (x 2 cos 2 a + y22) cos a tan 0 = 0. 

(33) 

The solution of (33) may be represented in the form 

r(q)) c o s 0  [. D 1 D ~ - D 2 ] 
- + , ( 3 4 )  

cosa  s i n ( 0 - - 0 0  s i n ( 0 + 0  l) 

where 0 = arcsin (sin ct cos ~0), r and ~0 are polar 
coordinates of point M on a diffraction line (x2 = 
r cos ~0, Y2 = r sin q~).'t" 

Before proceeding to a consistent analysis of the 
expressions obtained, we concentrate our attention on 
the most general features of diffracted lines that can be 
directly drawn from the properties of (32) to (34). 

* The function sgn ~ is equal to 1 for ~ >0, 0 for ~ = 0, - 1 for 
<0 .  

t Expression (34) coincides with the formula we have derived by 
determining the path of rays diffracted by the crystal (Aristov, 
Shmyt'ko & Shulakov, 1974). In the particular case D 2 = 0 (33) 
and (34) coincide with equations obtained by Newman (! 970). 

5.  D i f f r a c t i o n  p a t t e r n  g e o m e t r y  
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1. All diffraction lines are symmetr ic  relative to the X 
axis. The lines corresponding to the angles a and - a  
have an identical shape. 

2. At  a 4= 0 and l a I 4= n/2 a line shape is described 
by a fourth-degree polynomial .  The line equat ions are 
simplified in the planes -71 = 0 ,  -71 = D I and z I = 2D 1. 
The lines acquire a centre of  symmet ry  in the plane _71 = 

0 containing the radiat ion source. The diffraction lines 
at D2 = D 1  and D2 = 2D1 are second-order curves. 

3. The diffraction lines at a = 0 take the form of a 
circumference with the radius r = (2D~ - D 2) cot 0. 
The lines at l al = 7r/2 are second-order curves, and in 
the plane z~ = 2D 1 are straight ones. 

Equat ions (32) to (34) describe both real and 
imaginary  diffraction lines. The latter ones correspond 
to a cont inuat ion of the diffraction surface in the region 
of imaginary  sources. Real diffraction lines are curves 
satisfying the conditions Y0 > 0 and Yn > 0 for the 
forward reflexion observat ion planes (D 2 > D 1) or Y0 > 
0 and Yn < 0 for those in back-reflexion (D 2 < D1). The 
condition Y0 > 0 corresponds to the case of  the incident 
wave propagat ing towards  the crystal ;  the condition Yn 
> 0 corresponds to the Laue case, and the condition Yn 
< 0 to the Bragg case of  diffraction. Let us write the 
expressions for Yo and Yn. At  I a l 4= n/2: 

Y0 = cos a s i n ( 0 -  01)/cos 01 

Yn = - c o s  a s in(0 + 00 /cos  0v (35) 

At l al = n/2" 

)% = ?~n = D2 cos O/(D~ + y~),/2. (36) 

To analyse a line shape, it is convenient  to separate 
the angular  range of a ( - n  < a _< n) into four regions: 
in the first lal < 0 a n d  lal > n - 0 ,  in the second lal = 
0 and lal = n -  0, in the third 0 < lal < n'/2 and n/2 < 
lal < n - 0, and in the fourth lal = 7r/2. The values of 
a satisfying the condition la I - a21 = n correspond to 
diffraction by a single system of reflecting planes hkl 
and hkl, and therefore are considered simultaneously.  
Below, such reflexions will be denoted as H ( i f - n / 2  < 

- 

a < n/2) and H in the other cases. 

(a) The case of  lal < O and lal > n -  O 

For lal < 0 (the H reflexion) Y0 > 0 and Yn < 0; for 
lal > n - 0 (the H reflexion) the diffraction conditions 
are not satisfied (Y0 < 0). The lines for which lal < 0 are 
recorded only on the back-reflexion pattern.  All the 
lines are closed. Their shape, as a rule, is oval. While 
passing through the plane z I = 0, the major  axis of the 
oval reverses its direction. The closed diffraction lines 
are usually like ellipses. However ,  when the angle l al 
becomes close to 0, inflection points appear  on the lines. 
The range of a and 0 values, for which a change of the 
sign in the line curvature is observed, depends on the 
distance D 2. Thus,  in the plane z I = 0 the region under 
considerat ion is limited by the inequalities: 

sin 2 0/(1 + sin 2 0) < sin 2 a < sin 2 0. (37) 

Fig. 4 presents the change of line shape for different 
values of a. In the limiting cases D 1 - D 2 >> D 1 or 0 < 
D I -- D 2 ,~ D 1 all the closed lines may  be regarded as 
ellipses. 

(b) The case of lal  = 0 a n d  lal = n -  0 

For  l al = 0 specific features related to the behaviour  
of  the parameters  )'0 and YH are observed on the 
diffraction curves. Thus,  the condit ion Y0 > 0 is satisfied 
only for the angles ~0 4= tp c = arccos (sgn a). For  ~0 = (Pc 
the value Y0 is equal to zero and the diffraction 
conditions for the incident wave are not realized. In 
addition, at q) = n -  ~0 c, Yn = 0 and the diffracted ray  
direction becomes parallel to the crystal  surface. At 
other angles ~0, Yn is negative. This corresponds to 
Bragg diffraction. The features mentioned above result 
in r --, o0, as q) -, 0 or q) -, n, i.e. the diffraction lines are 
no longer closed. Fig. 5 presents the shape of the 
diffraction lines corresponding to the condition l al = 0 
for different values of D 2. Each of these lines consists of 
two branches  situated symmetr ica l ly  relative to the X 
axis. The lines under considerat ion are typical  fourth- 
order curves and are not interpreted in terms of conic 
sections for any D 2, including the case D 1 - D 2 >> D 1. 
Also note that  these are curves of varying curvature.  
The diffraction condition Yo > 0 is not realized for the/z /  
reflexion. 

(c) The case of  O < lal < n/2 and n/2 < lal < n -  O 

For such an a the values Yo = Yn and ?n = ?0 equal 
zero when ~0 = ~),.: = + _ arccos (sin 0/sin a) and ~0 = 

• ~ ~  ~ ~?'° X 

Fig. 4. Diffraction pattern geometry in the plane z~ = 0: the zone 
axis for reflecting planes is parallel to the Y axis. The curves are 
constructed for D~ = 1, 0 = 45 ° and the angle a is equal to 0, 35, 
42, 50, 70 and 80 °. The condition a < 45 ° corresponds to closed 
lines; when 35 ° 16' < n < 45 ° curves of varying curvature are 
obtained. 
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(ff3.4 = 7~ ~ arccos (sin 0/sin a), respectively. The 
half-straight lines defined by these angles ~0~, ~02, ~03 and 
q)4 separate  the plane XEY 2 into the regions in which 
different combinat ions of  signs of  Y0 and 7n or 70 and Yt? 
are realized. All the lines observed are open (r --, oo, as 
~0 --, ~01, i = 1, 2, 3, 4). To analyse these lines, we con- 
sider a section of  the diffraction surfa_ce by the plane Zl 
= D I (see Fig. 6).* The H and H curves are the 
branches  of  a hyperbola  and correspond to the crystal  
points satisfying the Bragg reflection conditions. It 
follows f rom (35) that  the H branch is completely situ- 
ated in the Laue diffraction region (7,0 > 0) and that  it 
corresponds  to the lines on the t ransmission pat terns 
(D2 > D~). The H branch along the segments ooa and 

* The diffraction lines presented in Figs. 6 to 8 correspond to the 
reflexions [[3 (a = 79 ° 58', H reflexion) and 113 ( a=  -100 ° 2',/7/ 
reflexion) for a Si single crystal with the surface plane (111), Cu Ka 
radiation (0 _ 28°), D~ = 1. In our notation ~0 a = arccos(sin 0/ 
I sinai). 

Y2 

X2 

boo lies in the Bragg diffraction region (Tn < 0, D 2 < 
D~), and along the segment ab in the Laue region (Tn > 
0, D2 > D1). Division of  the H branch into the segments 
of  the Laue and Bragg cases of  diffraction leads to the 
appearance  of  diffraction lines both in the back- 
reflexion and transmission scheme (from the segments 
aoo and boo, and the segment ab, respectively). 

Fig. 7 presents the diffraction lines recorded in the 
back-reflexion scheme at different distances D 2 < D I. 
In the planes located near  the crystal  surface (0 < D~ - 
D 2 ,~ D1) the diffraction line shape approaches  a curve 
formed from the segments ooa and boo of  the H branch 
of  the hyperbola  (see Fig. 6) and the rays  aa' and bb' 
corresponding to the condition 7n = 0. The upper and 
lower branches  of  the described diffraction lines have 
different asymptotes  and, consequently,  are not hyper- 
bolae in any plane z~ = constant .  

N o w  consider the t ransmission case. Fig. 8 presents 
the form of  the diffraction curves in different planes z l 
= D 2 > D~ for the H and/7/ref lexions .  At  the distance 
D 2 satisfying the condition" 

D2/D 1 -- 1 < sin2(0 - a)/sin2(O + a)  < 1, (38) 

the branch H is a curve of  a varying curvature.  At D 2 = 

2D~ the branches  H and [ /  coincide. With further 
increase of  D 2 the branches  H and [ / c h a n g e  place. At 
distances D 2 satisfying the condition 

- -  . - 1 < sin2(0 - a)/sin2(O + a) < D2/D ~ -- 1, 

-io \ io 

k k  ~ Y2 

Fig. 5. Diffraiig~t]iun~Se~Orre;!n~! I~ils~ a 0. The 
curves are D 2 
is equal to (curve 1), 0 

"20 -10 I ~0 20 

Q. - "~  "-5 
H b 

6' 
Fig. 6. Intersection of the diffraction surfaces ~n = 0 and ~n = 0 

with the observation plane z~ = D r Point Q is the centre of the 
hyperbola, ~0~ ~_ 61 o 

- 3 0 '  

(39) 

Fig. 7. Diffraction lines corresponding to the condition 0 < lal < 
n/2 and recorded in the back-reflexion scheme. Curves 1, 2, 3, 4 
are constructed for distances D 2 equal to 0.99, 0.5, 0, -1.  
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the branch/z / is  a curve of varying curvature. For D 2 >), 
D~ in the range of angles ~0 which are not too close to 
~o i, the branches H and H are branches of a hyperbola. 

(d) The case o f l a l  : n /2  

The diffraction lines at l al = n/2 are observed only 
in the transmission scheme and are hyperbolae in the 
planes z~ = D 2 #: 2D~. At D 2 = 2D 1 the branches H and 
H coincide and degenerate into a straight line [see (32)]. 
When the normal to the crystal surface n o coincides 
with the zone axis, the diffraction pattern on the X-ray 
photograph located in the plane z~ = 2D~ looks like a 
fan of straight lines passing through the point x~ = 0 
and y~ = 0 and corresponding to the directions of 
crystallographic symmetry (see Fig. 9). 

Note  1. The intensity of the diffraction line recorded 
on the film parallel to the crystal surface is determined 
by the expressions: Ju(R)  = I 7n(RI I ~'u(R) 12, where 
Jn(R)  is the illumination intensity at the observation 
point R. In regions I and III the distribution Jn(R)  can 
be represented in explicit form: 

J ~  = n 2 C2s Ixnl 2 (yn /2Ro sin 2 20) rect q~n (40) 

segments) for which the values Y0 and 7H are of the 
order of 1 have the highest intensity. This condition 
corresponds to the centre of the X-ray pattern. 

Let us concentrate our attention on the fact that (40) 
and (41) depend on the parameters 70 and 7n in a 
nonsymmetric way. This means that some asymmetry 
of intensity for the segments of the diffraction lines 
corresponding to 70 --" 0 or 7~ --' 0 (at 70 --' 0, J~ ~ 70 
and j~xi ~ 702; at 7H -" 0, J~ ~ 72n and j I I l ~  73) should 
be clearly observable for the open lines in the Bragg 
diffraction case (see Fig. 7). Such lines often appear on 
the X-ray patterns obtained at distances D 1 -- D 2 much 
smaller than the film dimensions (see Fig. 10). The 
symmetric sections of some lines are not recorded on 
the film because their intensity is too weak. 

It also follows from (35), (36) and (42) that the 
parameter  tr F changes along a diffraction line at a ~ 0. 
This means that different segments of a line may 

J~ '  = n 2 C~lxul2(t2/2Rol~Tu) sinc2(t 2 ~ulo~). (41) 

The values 70 and 7n are determined by (35) and (36), 

R 0 =  D l yo I + (D 2 -  D1) Un I 

/~ = D 1 7o I + (D 2 -- Dl)  7~ 3 

x (sin 2 20 + 270 7n cos 2 0 - -  y2n). (42) 

It is seen from (40) and (41) that the intensity JH(R) 
at a :/: 0 changes along a diffraction line (as ~0 
changes). The line segments for which Y0 ~- 0 or 7H ~- 0 
correspond to zero intensity and, consequently, are not 
recorded on the X-ray photograph. The lines (or line 

J 
I -20 

5H 

s //,¢ 
I I / / L  

5 H 4 H  4 H 3 H , H 2 H  2 H  

Z 

I ] I 

5 %\ 
/ V  5 '///" 

1H 

r~ 

x~ 

0 ~ 

Fig. 8. Diffraction lines corresponding to the conditions 0 < tal < 
n/2 and n/2 < l al < /z: - 0 and recorded with the transmission 
technique. Curves 1, 2, 3, 4, 5 are constructed for the distances 
D2equal to 1.01, 1.5, 2, 3,4. 

Fig. 9. The X-ray pattern of an Ai203 crystal recorded at the 
distance D 2 = 2D I, by making use of a screen protecting the 
observation region from the transmitted beam. The normal to the 
crystal surface coincides with the direction [111 ]; radiation Cu 
Ka. 

l i p  

Fig. 10. X-ray pattern from a fragment of Si crystal recorded in the 
back-reflexion scheme. Surface plane (111), radiation Cu Ka. 
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correspond to different diffraction regions and hence 
different intensity distributions [see (40) and (41)]. At 
Y0--'0 or YH-"0 a F tends to zero, and the case of 
Fraunhofer diffraction is realized. 

Note 2. The width of diffraction lines is determined 
by the conditions I~HI _< 1/2 (in region I) or I~/I  
aE/F (in region III). Without going into a detailed 
analysis of these relations, it is worth mentioning that 
the diffraction line width at a :~ 0 is not constant and 
may vary over a wide range. 

4. The diffraction lines recorded with the diver- 
gent-beam technique correspond to intersections of 
surfaces q~H = 0 with the observation plane and are 
fourth-order curves. The line shapes are of a wide 
variety and include both closed and open lines, curves 
with a varying curvature, etc. The width and intensity 
of the diffraction lines are not constant at a =~ 0 and 
may vary over a wide range. 

Conclusion References 

The basic results of this paper are the formulation of a 
kinematical theory of spherical X-ray wave diffraction 
and the analysis of the diffraction pattern from a thin 
perfect crystal. The expressions obtained describe both 
shape and structure (intensity distribution in the 
scattering plane) of the diffraction lines recorded on the 
X-ray photographs for any geometry of experiment. 
The investigations carried out enable us to draw the 
following conclusions. 

1. In the crystal diffraction of a spherical X-ray 
wave, the Fraunhofer diffraction conditions are not 
valid for a wide variety of single crystals with different 
degrees of perfection. This can be applied to the 
divergent beam and pseudo-Kossel techniques. 

2. The intensity distribution of the diffracted wave 
essentially depends on the region in which the obser- 
vation plane is located. Region (I) pertains to dif- 
fraction of a geometrical shadow image, regions (II) 
and (III) correspond to Fresnel and Fraunhofer 
diffraction, respectively. In regions I and II an 
interpretation of the diffracted wave intensity distri- 
bution in terms of the intersections of reciprocal-lattice 
nodes with the Ewald sphere is incorrect. 

3. The diffraction pattern geometry is determined 
only by the crystal structure and the geometry of the 
experiment and is independent of the diffraction region 
in which the observation plane is located. 
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